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Abstract 1 

Detection of non-wear periods is an important step in accelerometer data processing. This 2 

study evaluated five non-wear detection algorithms for wrist accelerometer data and two rules 3 

for non-wear detection when non-wear and sleep algorithms are implemented in parallel. 4 

Non-wear algorithms were based on the standard deviation (SD), the high-pass filtered 5 

acceleration, or tilt angle.  Rules for differentiating sleep from non-wear consisted of an 6 

override rule in which any overlap between non-wear and sleep was deemed non-wear; and a 7 

75% rule in which non-wear periods were deemed sleep if the duration was < 75% of the 8 

sleep period. Non-wear algorithms were evaluated in 47 children who wore an ActiGraph 9 

GT3X+ accelerometer during school hours for 5 days. Rules for differentiating sleep from 10 

non-wear were evaluated in 15 adults who wore a GeneActiv Original accelerometer 11 

continuously for 24 hours.  Classification accuracy for the non-wear algorithms ranged 12 

between 0.86 – 0.95, with the SD of the vector magnitude providing the best performance. 13 

The override rule misclassified 37.1 minutes of sleep as non-wear, while the 75% rule 14 

resulted in no misclassification. Non-wear algorithms based on the SD of the acceleration 15 

signal can effectively detect non-wear periods, while application of the 75% rule can 16 

effectively differentiate sleep from non-wear when examined concurrently.  17 

 18 
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Introduction 20 

Due to their unobtrusive size, robustness, and low cost, accelerometer-based motion 21 

sensors have become the method of choice for measuring physical activity and sedentary 22 

behaviour in free-living samples [1, 2].  Detection of non-wear periods is an important step in 23 

accelerometer data processing. The determination of valid monitoring days, time spent in 24 

sedentary behaviour, and adjusting activity estimates for differences in daily wear time 25 

during data analysis, are all dependent on the accurate detection of non-wear periods. 26 

Inaccuracies in non-wear detection can lead to substantial variations in physical activity 27 

estimates which can impact the validity of associations in observational studies, and increase 28 

the risk of bias in intervention trials.  29 

Current methods use strings of consecutive zero counts ranging between 20-90 30 

minutes in duration as an indicator of non-wear time [3-9]. However, these algorithms have 31 

been developed for monitoring protocols in which hip or waist mounted accelerometers are 32 

worn during the waking hours and are based on proprietary activity counts which cannot be 33 

generalised across different accelerometers. As such, they cannot be applied to more 34 

contemporary activity monitoring protocols in which raw tri-axial accelerometer signal is 35 

collected at the wrist over a full 24-h period [10-12]. 36 

To date, non-wear detection algorithms for raw acceleration signal have received little 37 

research attention. Van Hees [13, 14] developed a non-wear detection algorithm based on the 38 

standard deviation and magnitude of acceleration in each axis, calculated for 60-minute 39 

windows with a 45-minute overlap. Additionally, a series of rules is applied to test the 40 

plausibility of short wear periods located in-between long periods of non-wear.  The 41 

algorithm, is based on data from a single lab experiment in which accelerometers were left 42 

motionless on a flat surface for 30 minutes and visual inspection of accelerometer data from a 43 



 

single observational study [13]. However, to our knowledge, the validity of the algorithm has 44 

not been independently tested and reported on in the scientific literature.  45 

Another important methodological issue related to automatic non-wear detection is 46 

the misclassification of sleep as non-wear. Sleep is essential for health and well-being in both 47 

children and adults; and there is consistent evidence linking short sleep duration to weight 48 

gain and obesity through reductions in physical activity, increases in sedentary behaviours, 49 

and alterations in dietary intake [15].  On the weight of this evidence, public health 50 

organisations have issued 24-hour movement guidelines recommending a healthy 51 

combination of physical activity, screen time, and sleep across the day [16-18]. In studies 52 

employing 24-h monitoring protocols to objectively measure physical activity, sedentary 53 

time, and sleep and assess compliance with these guidelines, it is likely that non-wear 54 

detection algorithms will misclassify sleep as non-wear periods. Therefore, it is necessary to 55 

derive rules that can be applied when sleep and non-wear algorithms are implemented in 56 

parallel. One approach has been to apply, a simple override rule which allows the researcher 57 

to decide if overlapping non-wear periods should replace sleep or vice versa [19, 20].  58 

However, like the aforementioned non-wear detection algorithm, the validity of the override 59 

rule has not been formally evaluated.  60 

With this in mind, the purpose of the current study was to evaluate the validity of an 61 

algorithm for detection of non-wear periods in raw acceleration data. In addition, to expand 62 

the current knowledge in this area, the validity of four new non-wear detection algorithms 63 

was evaluated and compared.  To address the challenges of implementing non-wear and sleep 64 

detection algorithms in parallel, the performance of two rule based heuristics for the 65 

simultaneous detection of sleep and non-wear periods was examined.  66 

 67 



 

Methods 68 

Two completely de-identified wrist accelerometer datasets were used in the study.  69 

Dataset 1 comprised accelerometer data collected as part of the physical activity intervention 70 

trial involving 12 primary schools in New South Wales, Australia.  Because the study’s 71 

evaluation plan required participants to only wear the accelerometer during school hours, the 72 

dataset provided distinct periods of known non-wear time, which allowed for the evaluation 73 

of the non-wear algorithms. Dataset 2 comprised accelerometer data from a study in 74 

Queensland, Australia evaluating the performance of a wrist-worn accelerometer activity 75 

classification model in free living adults [21]. This dataset was selected because it provided 76 

periods of sleep without non-wear periods, which allowed for the evaluation of the decision 77 

rules for differentiating sleep from non-wear. The comparative performance of the five non-78 

wear detection algorithms was tested using Dataset and  the best performing non-wear 79 

detection algorithm was implemented in parallel with a sleep detection algorithm in Dataset 80 

2. Descriptive characteristics for each sample and information about the monitoring protocols 81 

are reported below. 82 

Dataset 1 83 

Forty-seven children (46.7% female; mean age = 8.7 ± 0.4 y) wore an ActiGraph 84 

GT3X+ accelerometer (ActiGraph Corporation, Pensacola, FL) on their non-dominant wrist 85 

during school attendance on five consecutive days, with the sampling frequency set to 30 Hz. 86 

Teachers distributed the monitors individually to students to wear as they arrived to school 87 

and collected the monitors from the students as they left school each day. Teachers recorded 88 

the time students put on and took off the monitors each day in a wear-time log, which is 89 

consistent with previous studies evaluating non-wear algorithms [7, 22-24]. This protocol 90 

provided ground truth non-wear periods from midnight to before school and the end of school 91 

to midnight, with no sleep periods. Additionally, on one day, a subsample of children 92 



 

removed the accelerometer for class pictures between 11:50 am and 1:20 pm, thus providing 93 

an additional non-wear period for comparison. A total of 175 monitoring days were available 94 

for analysis.  95 

Dataset 2 96 

A total of 15 adults (38% female; mean age = 27.6 ± 6.2 y) wore a GENEActiv 97 

Original accelerometer (Activinsights Ltd., Cambridgeshire, UK) on their non-dominant wrist 98 

for a 24-h period, with the sampling frequency set to 30 Hz. Participants were instructed to 99 

wear the monitor for the full 24-hour period and report times when they may have removed 100 

the monitor. Data was considered valid only if the monitor was worn for the full time period. 101 

Thus, similar to the approach implemented by Choi and colleagues [3, 4] any non-wear 102 

detected by an algorithm was known to be an error (false positive).  The day after the 24-h 103 

monitoring period, participants completed the Multimedia Activity Recall for Children and 104 

Adults (MARCA) [25], a computer-based time use survey that requires participants to recall 105 

the activities they completed on the previous day in time intervals of 5 minutes or more, 106 

including sleep. Data from the MARCA provided ground-truth for sleep duration over the 24-107 

h monitoring period. The use of self-reported time use data for identifying sleep periods is 108 

consistent with the approach used by Van Hees et al. [26, 27] in the development and 109 

evaluation of the sleep algorithm implemented in the current study; and has been used in 110 

other studies evaluating the validity of sleep-wake period detection algorithms  [27-29]. 111 

Non-wear algorithms 112 

Five non-wear detection algorithms were evaluated. Sample code and data for the 113 

non-wear detection algorithms can be found in the following link: https://github.com/MA-114 

QUT/Nonwear. 115 

The first algorithm (VH_30/80), developed by Van Hees et al. [13,14], identified non-116 

wear periods using the standard deviation (SD) and range of the acceleration signal along the 117 



 

x, y, and z axes recorded for 60-minute windows, with a 45-minute overlap. Windows were 118 

classified as non-wear if the SD was < 13 mg (g = gravity-based acceleration units, where 1 g 119 

= 9.81 m/s2; mg = milli g where 1000 mg = 1g) and the range was < 150 mg for at least two 120 

of the axes. Additionally, all wear periods of < 6 hours and < 30% of the combined duration 121 

of their bordering non-wear periods were classified as non-wear. Wear periods of < 3 hours 122 

and 80% the duration of their bordering non-wear periods were also classified as non-wear.  123 

The second algorithm (SD_XYZ) was based solely on the SD of the acceleration 124 

signal recorded in the x, y, and z axes. Windows were classified as non-wear if the SD of all 125 

3 axes was < 13 mg’s for 30 consecutive minutes. The third algorithm (SD_VM) was based 126 

on the SD of the vector magnitude (VM) of the tri-axial acceleration signal. Windows were 127 

classified as non-wear if the SD of the VM was < 13 mg for 30 consecutive minutes. The 128 

fourth algorithm (SUM_HPF), applied a high-pass filter (4th order Butterworth filter with ω0 129 

= 0.25 Hz) to remove the static gravitational component and residual noise from the 130 

acceleration signal leaving only acceleration due to movement [30, 31]. The absolute value of 131 

the resultant acceleration signal was then summed for each axis over the entire 30-min 132 

window. Windows were classified as non-wear if the sum of the acceleration signal for all 133 

three axes was 0 mg for 30 consecutive minutes.  134 

The fifth algorithm (TILT) was based on a lack of change in monitor tilt angle in all 135 

three axes relative to the horizontal. Tilt for each axis was determined using the equation: 136 

[atan([axis of interest]/√(1st orthogonal axis2 + 2nd orthogonal axis2)) ∗ (180/pi)] 137 

Windows were classified as non-wear if the change in tilt was < 1.0° in all three axes 138 

for 30 consecutive minutes. The 1.0° threshold was chosen because when not worn tilt angle 139 

will not change by more than 1.0° for all three axes and a change of more than 1.0° will only 140 

occur from a 17.5mg displacement [32].  141 



 

For the SD_XYZ, SD_VM, SUM_HPF, and TILT algorithms, wear-time periods 142 

were classified as non-wear if the duration was < 30 min and < 30% of a bordering non-wear 143 

period. This rule was implemented to account for brief wear periods located in-between long 144 

periods of non-wear. The 13mg threshold for the VH_30/80, SD_XYZ and SD_VM 145 

algorithms was dictated by the residual noise associated with the electrical components, 146 

battery voltage, and sampling frequency in the ADXL accelerometers used in Geneactiv, and 147 

Kionix accelerometers used in ActiGraph monitors [33, 34].   148 

--Insert Table 1 near here-- 149 

Non-wear and sleep rules 150 

When the best performing non-wear detection algorithm was implemented in parallel 151 

with the Van Hees sleep detection algorithm [27] in Dataset 2, two rule-based heuristics were 152 

examined. The first approach implemented a simple override rule. Any overlap between 153 

windows of predicted non-wear and predicted sleep time were classified as non-wear. The 154 

second approach employed a 75% overlap rule. If the duration of an overlapping non-wear 155 

period was < 75% of the predicted sleep period, the non-wear period was classified as sleep. 156 

Conversely, if the overlapping non-wear period was > 75% of the predicted sleep period, the 157 

sleep period was classified as non-wear. Sample code and data for the decision rules can be 158 

found at: https://github.com/MA-QUT/Nonwear. 159 

Algorithm Evaluation 160 

For the evaluation of the non-wear algorithms in Dataset 1, accuracy at the instance 161 

level (i.e., each 1 second epoch) was evaluated by calculating percent agreement, sensitivity, 162 

specificity, and area under the receiver operating characteristic (ROC) curve [35]. When the 163 

monitoring day served as the unit of analysis, non-wear time estimates were evaluated by 164 

calculating the mean bias and 95% limits of agreement (LoA), root mean square error 165 



 

(RMSE), and mean absolute percent agreement (MAPE). To evaluate the performance of the 166 

rules to distinguish sleep from non-wear periods in Dataset 2, estimates of sleep duration 167 

were compared to those reported in the MARCA, and mean bias and 95% LoA were 168 

calculated. 169 

 170 

Results 171 

Percent agreement, sensitivity, specificity, and area under the ROC curve for the five 172 

non-wear algorithms are reported in Table 2.  Percent agreement for all five algorithms was 173 

excellent. The TILT (96.1%) algorithm had the highest agreement, followed by the SD_VM 174 

(95.9%) algorithm. The VH_30/80 (90.0%) algorithm had the lowest percent agreement, but 175 

was still excellent. In addition, all five algorithms exhibited excellent sensitivity and good to 176 

excellent specificity. The area under the ROC curve provides a measure of classification 177 

accuracy that jointly considers sensitivity and specificity [34]. Applying the rubric of Metz 178 

[36] the SD_XYZ, SD_VM, SUM_HPF, and TILT algorithms demonstrated excellent 179 

classification accuracy, while the VH_30/80 algorithm demonstrated good classification 180 

accuracy. 181 

--Insert Table 2 near here-- 182 

The results of the day level analysis are presented in Table 3. Based on the daily wear 183 

time logs completed by the classroom teacher, average non-wear time was 1089.8 min/day. In 184 

comparison, estimated daily non-wear time ranged between 1064.0 mins for the VH_30/80 185 

algorithm to 1091.1 mins per day for the TILT algorithm. Non-wear time was marginally 186 

underestimated by four out of the five non-wear algorithms, with SD_VM (0.8 min/day) and 187 

TILT (-1.3 min/day) displaying the lowest mean bias. LoA’s were comparable in magnitude 188 

for SD_XYZ, SD_VM, SUM_HPF, and TILT, whilst VH_30/80 had an LoA that was more 189 

than 2-fold larger. RMSE’s for the five non-wear algorithms ranged from 63.0 min/day for 190 



 

TILT to 179.6 min/day for VH_30/80. MAPE for the SD_XYZ, SD_VM, SUM_HPF, and 191 

TILT ranged from 4.7% to 5.2%, whilst the VH_30/80 algorithm exhibited a MAPE of 192 

12.9%.  193 

--Insert Table 3 near here-- 194 

The performances of the two rules for differentiating sleep from non-wear are 195 

reported in Table 4. Relative to the MARCA, the Van Hees sleep detection algorithm 196 

overestimated sleep duration by an average of 11.6 min/day (95% LoA = -25.1 min/day to 197 

48.5 min/day). When the best performing non-wear algorithm (SD_VM) was implemented in 198 

parallel with this sleep detection algorithm, the override rule resulted in an average of 37.1 199 

min of sleep misclassified as non-wear (95% LoA = 15.1 - 57.9 min). When implementing 200 

the 75% overlap rule, there was no misclassification of sleep as non-wear.  201 

--Insert Table 4 near here-- 202 

Discussion 203 

The current study evaluated the validity of five non-wear detection algorithms and 204 

two rule-based heuristics to differentiate sleep from non-wear. All five non-wear detection 205 

algorithms provided accuracies greater than 0.86, with the SD_VM and TILT algorithms 206 

providing the best overall performance. Due to its ease of implementation, the SD_VM is 207 

recommended. Additionally, implementation of the 75% rule eliminated all misclassification 208 

of sleep as non-wear when the two algorithms were implemented in parallel.  209 

The results suggest that, regardless of the method used to determine non-wear, the 210 

length of the non-wear time window was the most influential factor in determining algorithm 211 

performance. The SD_XYZ, SD_VM, SUM_HPF, and TILT required 30 consecutive 212 

minutes below their representative threshold for a period to be considered non-wear and these 213 

algorithms displayed greater than 95% classification accuracy. In comparison, the VH 30/80 214 



 

required 60 minutes below the respective threshold for a period to be classified as non-wear, 215 

which resulted in lower classification accuracy and an RMSE twice that of the other 216 

algorithms. The lower performance of the VH 30/80 relative to the other four may thus be 217 

explained, at least in part, to its longer window length and different plausibility rules for brief 218 

wear periods. For example, in Dataset 1, removing the monitors for 90 minutes for class 219 

pictures during the school day resulted in two separate wear periods that were less than 6 220 

hours and less than 30% of bordering non-wear periods. Implementation of the VH 30/80 221 

algorithm thus resulted in the entire school day being classified as non-wear. Additionally, if 222 

the monitor was removed a few minutes before the end of the school day, a wear period of 223 

less than 6 hours was created, and the entire school day was misclassified as non-wear. 224 

Notably, when the non-wear time window for VH 30/80 was reduced to 30 minutes, with a 225 

75% overlap, and the same plausibility rules as the other four algorithms were applied, the 226 

performance of the VH 30/80 improved substantially, with ROC-AUC increasing to 0.92, and 227 

RMSE and MAE decreasing to 86.3 min and 6.1%, respectively. 228 

 Although the VH 30/80, SD_XYZ, and SD_VM non-wear algorithms are all based on 229 

the SD of the acceleration signal, each algorithm has its advantages and disadvantages.  The 230 

VH 30/80 is very sensitive to movement but the least robust to internal mechanical noise, 231 

because only two out of the three accelerometer axes have to be above the 13mg threshold. 232 

The SD_XYZ algorithm is slightly less sensitive to movement but more robust to noise 233 

because all three axes have to be above the threshold. Conversely, the SD_VM is the most 234 

sensitive to movement while also being the most robust to noise. When stationary, the VM 235 

value will be dominated by acceleration due to gravity on the vertical axis (1000 mg) and 236 

thus the SD of the VM will be minimally affected by internal noise that may occur on the two 237 

orthogonal axes. When movement occurs, the value of the VM will be dominated by the 238 

direction of movement occurring along any of the three orthogonal axis and therefore is more 239 



 

sensitive to movement than the VH 30/80 and SD_XYZ algorithms. The TILT algorithm, in 240 

contrast, works on the principle that tilt angle will not change during extended periods of 241 

non-wear. The algorithm thus has the advantage of not being reliant on the variability of the 242 

acceleration signal. Under static conditions when the monitor is not worn, the orientation will 243 

not change by more than 1.0° along any of the axes. However, under dynamic conditions the 244 

angle measurements become unstable which may affect the reliability of the derived angles 245 

without additional processing. The SUM_HPF algorithm uses a high-pass filter to eliminate 246 

any acceleration due to internal noise and gravity, however as there is no universal band-pass 247 

filter in the literature, it is also the most imprecise algorithm. Despite the subtle differences 248 

between each algorithm, they all are based on lack of monitor movement, which is why they 249 

all performed similarly with the most influential factor being the length of period needed to 250 

be considered non-wear. 251 

When the best performing non-wear detection algorithm was applied in parallel with a 252 

previously validated sleep detection algorithm, brief episodes within the sleep period were 253 

identified as non-wear; reflective of the lack of arm movement during portions of nightly 254 

sleep. The simple override rule resulted in an average of 37.1 minutes of non-wear 255 

classification during predicted sleep periods. We chose the option of replacing sleep with 256 

non-wear because: 1) false positives for sleep during prolonged periods of non-wear would 257 

lead to inaccurate sleep duration estimates and bias sleep parameter results; and 2) data 258 

imputation methods can be applied to instances of non-wear, but not predicted sleep periods. 259 

Implementation of the 75% overlap rule completely eliminated the misclassification of sleep 260 

as non-wear.  This is because the 75% overlap rule considers the entirety of the sleep duration 261 

and not just the period of overlap. In addition, by providing a percentage limit rather than an 262 

absolute time limit, the 75% overlap rule affords flexibility for changes in nightly sleep 263 

duration. 264 



 

The current study had several strengths. First, the non-wear algorithms were applied 265 

to free-living accelerometer datasets using two accelerometer brands that are widely used by 266 

physical activity researchers. Prior research suggests that different accelerometer brands 267 

provide different raw acceleration values [37-39]. Therefore, it was important to develop non-268 

wear algorithms that are dependent on change in acceleration (i.e., standard deviation or tilt) 269 

and not absolute acceleration values. In addition, the use of time-invariant features allows for 270 

the algorithm to be applied over different window lengths. Second, our study evaluated the 271 

performance of non-wear detection algorithms in both child and adult samples, thus 272 

increasing the generalisability of the results. Third, the study introduced simple rules that can 273 

be easily applied when a non-wear algorithm is implemented in parallel with a sleep 274 

algorithm. 275 

Opposing these strengths were several limitations. First, although Dataset 1 provided 276 

known periods of non-wear before and after the school, the exact start and end of non-wear 277 

periods were based on daily wear-time logs completed by classroom teachers, However, logs 278 

have been used to evaluate non-wear algorithms in prior studies [7, 22-24]. To determine if 279 

inaccuracies in the log were contributing to biased results, a sensitivity analysis was 280 

conducted in which the start and end of each day was adjusted by 15 minutes. Notably, the 281 

performance of the five algorithms did not change. Second, the algorithms were tested in 282 

students who wore an accelerometer during a six-hour school day. As such, each monitoring 283 

day did not include short periods of non-wear related to removal of the monitor for 284 

bathing/showering or other self-care activities.  . Future studies should examine the 285 

performance of our algorithms in samples wearing the accelerometer over longer periods, 286 

such as studies that monitor activity levels during the waking hours.  Third, because Dataset 2 287 

did not contain any periods of non-wear, the rules for differentiating sleep from non-wear 288 

only evaluated instances of non-wear misclassification during sleep. Future studies should 289 



 

assess the performance of the rules when differentiating instances of sleep misclassification 290 

that occur during monitor non-wear.  291 

In summary, algorithms based on the standard deviation of the VM and tilt angle can 292 

be used for automatic detection of non-wear from raw accelerometer data collected at the 293 

wrist. The use of a 30-minute rather than 60-minute non-wear windows allows for the 294 

identification of legitimate brief non-wear periods that would otherwise be undetected. 295 

Application of algorithms that are not dependent on the signal magnitude allows for a 296 

consistent approach to non-wear detection across different monitor brands. Additionally, the 297 

75% overlap rule provides a simple method to differentiate sleep periods from non-wear 298 

periods when non-wear and sleep detection algorithms are implemented in parallel. 299 
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Table 1: Non-wear Detection Algorithms 

Non-wear algorithm Non-wear detection 

VH_30/80 60 min sliding window with 45 min overlap 

SD < 13 mg AND peak-to-peak < 150 mg for 2 out of 3 axes 

for 60 minutes 

Wear-periods < 6 hours AND < 30% of bordering non-wear 

period is non-wear 

Wear-periods < 3 hours and < 80% of bordering non-wear 

period is non-wear 

SD_XYZ 

1 second sliding window 

SD of x, y, and z axes < 13 mg for 30 consecutive minutes. 

Wear periods < 30 minutes AND < 30% of bordering non-

wear periods is non-wear 

SD_VM 

1 second sliding window 

SD of VM < 13 mg for 30 consecutive minutes. 

Wear periods < 30 minutes AND < 30% of bordering non-

wear periods is non-wear 

SUM_HPF 

1 second sliding window 

Apply 0.25 Hz High pass filter, and the Sum of x, y, and z 

axes = 0 mg for 30 consecutive minutes 

Wear periods < 30 minutes AND < 30% of bordering non-

wear periods is non-wear 

TILT 

1 second sliding window 

Change in tilt < 1.0° in all three axes for 30 consecutive 

minutes 

Wear periods < 30 minutes AND < 30% of bordering non-

wear periods is non-wear 



 

 

Table 2: Classification Performance of Non-wear Detection Algorithms Applied in Dataset 1 

Algorithm Agreement (%) Se(%) Sp(%) AUC 

SD_XYZ 95.8 97.1 92.0 .95 

SD_VM 95.9 97.2 91.9 .95 

SUM_HPF 95.6 96.6 92.3 .94 

TILT 96.1 97.4 91.9 .95 

VH 30/80 90.0 92.2 81.7 .86 

Se(%), Sensitivity; Sp(%), Specificity; AUC, Area Under the Curve 

  



 

Table 3: Performance of Non-wear Detection Algorithms for predicting daily non-wear time 

in Dataset 1 

Algorithm Non-wear (SD) Mean Bias (95% LOA) RMSE MAPE 

Wear-time 1089.8 (30.2)    

     

SD_XYZ  1087.5 (61.8) 2.3 (-19.4 – 24.1) 67.2 5.0% 

SD_VM 1089.0 (61.6) 0.8 (-20.9 – 22.4) 65.9 4.9% 

SD_HPF 1081.5 (62.2) 8.3 (-13.6 – 30.2) 70.4 5.2% 

Tilt 1091.1 (59.8) -1.3 (-22.4 – 19.8) 63.0 4.7% 

VH 30/80 1064.0 (172.9) 25.8 (-37.8 – 89.4) 179.6 12.9% 

Values indicate minutes/day; Mean Bias: Observed - Predicted 

  



 

Table 4: Non-wear and Sleep Algorithm Applied in Parallel with Decision Rules in Dataset 2 

Algorithm Non-wear Sleep 

Ground-Truth 0.0 (0.0) 417.3 (60.2) 

   

Sleep  428.9 (84.2) 

   

Decision Rules:   

             Override  37.1 (43.6) 391.8 (77.9) 

             75% Rule: 0.0 (0.0) 428.9 (84.2) 

Values indicate Mean (SD) minutes/day 

 
 
 

 

 




